

# **ALL POWER LABS** *Carbon Negative Power & Products*

# **COMBINED HEAT and POWER (CHP) ACCESSORY**



Our **Combined Heat and Power (CHP) Accessory** can be added to our Power Pallets, more than doubling their total system efficiency by adding the thermal output to the electrical output. APL's CHP System uses a flat plate heat exchanger to capture heat from the engine's cooling system in this stage 1 system to raise the temperature of the working fluid by as much as 14 °C.

This is possible because only 20% of the energy contained in the feedstock is able to be converted to electricity by our genset. Most of the other 80% is normally lost via heat in the engine's cooling system and exhaust. By recovering some of this heat, the CHP allows the total efficiency of the whole system to exceed 35% by delivering up to 20 kW of thermal energy in addition to the 18 kW of electrical energy. This heat can be pumped via the working fluid to other locations where it can used for radiant floor heating and numerous other processes.

NOTE: APL's CHP System does not include the working fluid or any of its pumps, plumbing or other components of its circulation system.

## **TECHNICAL SPECIFICATIONS**

| VALUE                                        | SPECIFICATION                           |
|----------------------------------------------|-----------------------------------------|
| Electrical + Thermal Efficiency <sup>1</sup> | ~35%                                    |
| Max CHP System Output <sup>1</sup>           | ~20 kWt (@15 kWe)<br>70,000 BTU-h       |
| Working Fluid                                | Coolant: 50/50<br>Water/Ethylene Glycol |
| • Flow Rate                                  | ~1.5 m <sup>3</sup> /h<br>(~6.5 GPM)    |
| Target Inlet Temperature                     | 60 °C<br>(140 °F )                      |
| Target Outlet Temperature                    | 74 °C<br>(165 °F)                       |
| • Max. Temperature Rise                      | 14 °C<br>(57 °F)                        |
| Plumbing Connection                          | 1 inch NPT                              |
| Shipping Weight                              | 120 kg<br>(260 lb)                      |
| Potable Water                                | No                                      |

<sup>1</sup> Actual heat output varies depending on operating power levels and specifications of user-supplied hydronic components (not included).

# **USE CASE EXAMPLES**

| INDUSTRY                 | USE                                                                                                        |
|--------------------------|------------------------------------------------------------------------------------------------------------|
| Residential - Commercial | Radiant Hydronic Heating<br>Water to Air Heating<br>Pool & Spa Heating<br>Snow Melt<br>Adsorptive Chilling |
| Animal Husbandry         | Barn & Enclosure Heating<br>Sterilization & Cleaning                                                       |
| Agriculture              | Greenhouse Heating<br>Food/Seed Drying<br>Process Heat                                                     |
| Forestry                 | Kiln Drying Lumber<br>Pulp Drying<br>Space Heating                                                         |
| Manufacturing            | Chemical Processes<br>Food Processing<br>Fluid Transport<br>Textiles<br>Minerals                           |

NOTE: Not suitable for direct heating of potable water. All specifications are subject to change without notice.

# **TECHNICAL DESCRIPTION**



#### **PIPING & INSTRUMENTATION DIAGRAM**

The flow of the working fluid is shown in dashed lines, and flow of engine coolant is shown in solid red lines. Detains of critical values are shown in quadrants adjacent to the loop they refer to.



#### **POWER & TEMPERATURE TEST DATA**

The chart above compares test measurements of electrical power outputs and fluid temperatures plotted over time during a typical test run of the CHP system using a dummy heat load.

## **COOLANT HEAT RECOVERY MODULE**



Engine coolant is directed through a system of piping into a brazed-plate heat exchanger where some of the engine's waste heat will be transfered to a working fluid. The heat is transported to the application site via a circulation system supplied by the customer.

Mechanical thermostats and a radiator-bypass circuit maintain safe and efficient engine operating temperatures while optimizing the thermal output to the working fluid.

### **HEAT EXCHANGER**

| FEATURES           | SPECS                                       |
|--------------------|---------------------------------------------|
| Туре               | Brazed Plate                                |
| Material           | 316T Stainless steel<br>Pure copper brazing |
| Flow Capacity      | 14 m <sup>3</sup> /hr (60 GPM)              |
| Maximum Pressure   | 3.0 Mpa (435 psi)                           |
| Design Temperature | -160 °C to 225 °C<br>(-256°F to 437°F)      |

### PERFORMANCE

| VALUES                          | SPECS                              |
|---------------------------------|------------------------------------|
| Maximum Outlet Temperature      | 90 °C (190 °F)                     |
| Return Temperature Range        | 40 °C - 90 °C<br>(160 °F - 190 °F) |
| Standard Temperature Difference | 14° (57 °F)                        |
| Heating Water Volume Flow       | 1.5 m <sup>3</sup> /hr (6.5 GPM)   |
| Maximum Operating Pressure      | 1.0 Mpa (145 PSI)                  |
| Pressure Loss                   | 45 mbar (18 inH <sub>2</sub> O)    |